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A new analytical method was developed to predict the in-plane mode shapes and the
natural frequencies of a ring with widely distributed deviation. The Laplace transform was
used to "nd the exact solution of eigenvalue problem without assuming any trial functions
and "nite elements. The widely distributed deviation was e!ectively formulated in the
theory using Gauss}Legendre quadrature. The validity of the proposed method was
examined through "nite element analysis and modal test. The e!ects of partial change of the
density, the sti!ness, and the thickness on the natural frequencies of the ring were
investigated.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the past few years, structures of asymmetric ring shape have been investigated to analyze
related structures widely used in industries. The asymmetry of a ring-type structure is
normally due to partial cuts, added masses, non-uniform geometry, di!erent material
properties, etc., and the natural frequencies andmode shapes of these structures are changed
depending on the amount of asymmetry.
Many methods have been proposed for the analysis of rings with various asymmetries.

Allaei, Soedel and Young investigated the free vibration behavior of rings with attached
ground spring, attached torsional spring, and a point mass, using the receptance method
[1, 2]. Cerep used a harmonic approximation for the de#ection function of a ring and
Lagrange equation to analyze the in-plane vibration of circular rings on a tensionless
foundation [3]. Rossi investigated the e!ect of non-uniform cross-section to the in-plane
vibration of circular rings [4]. He used the "nite element method in which explicit
expressions for the sti!ness and mass matrices were derived for generic elements of ring's
circular central axis.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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To "nd an exact solution to the analysis of circular rings with small local deviation not
using the approximatemethod or the "nite element method, Hong and Lee developed a new
method that "nd the natural frequencies and mode shapes simultaneously without any trial
functions for mode shapes and the use of "nite elements [5]. They used the Laplace
transformation method for the eigenvalue analysis, and investigated the e!ect of a small
local deviation on the natural frequencies and mode shapes of a circular ring.
Recently, Gutierrez and Laura [6] proposed a method for the analysis of a non-uniform

ring using the di!erential quadrature method, while Wake et al. [7] investigated the
separation of natural frequencies of a cracked ring using a simple energy-based model.
Hwang, Fox and William obtained the natural frequencies and the mode shapes of thin
rings with in-plane pro"le variations [8, 9]. They used Fourier series to describe the inner
and outer ring surfaces and analyzed the in-plane vibration characteristics by means of the
Rayleigh}Ritz method.
Chung and Lee [10] developed a new conical ring element used in connection with FEM

in order to consider the e!ects of slight local deviations from an axisymmetric ring, and
analyzed the free vibrations of a nearly axisymmetric shell structure such as a Korean bell,
using this element. Kim et al. [11] analyzed the beating response of a ring-sti!ened
cylindrical shell with an attached concentrated mass, which is a simpli"ed model of
a Korean bell on the basis of the receptance method. They showed the e!ects of the ring
sti!ening and the asymmetry due to the concentration mass on the beating response.
In this study, an analysis method was developed for the eigenvalue analysis of circular

rings that have cross-sectional deviation over large circumferential length, using the
Laplace transformation and Gauss quadrature. The Gauss quadrature is introduced to
analyze the e!ect of this widely distributed circumferential asymmetry, because the method
of Hong and Lee is suitable only for a deviation of a short circumferential length. The
natural frequencies and mode shapes of rings with various asymmetries were calculated and
compared with the results from FEM andmodal test to examine the validity of this analysis.
Based on the veri"ed results, several simulations were performed to investigate the
characteristics of the natural frequencies.

2. THEORY

2.1. EQUATION OF MOTION

If the thickness of a ring is thin compared with the radius, the e!ect of shear force and
rotational inertia can be neglected and the equation of motion for in-plane vibration of
a circular ring is
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where M
�
, u, v, m and R are the bending moment, radial displacement, circumferential

displacement, mass per unit length, and radius of a circular ring respectively [12, 13].
For a ring that has a circumferential deviation widely distributed over �� as shown in

Figure 1, the Heaviside unit step function can be used to express the properties in the
circumferential direction. Therefore, sti!ness and mass per unit length of the ring can be
represented as
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Figure 1. Circular ring with widely distributed deviation.
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whereH is the Heaviside unit step function, and the subscripts u and a denote original ring's
properties and added properties respectively.
Assuming no circumferential strain in the neutral axis of the ring and v(�, t)"<(�)e���, we

can derive the eigenvalue problem from equations (1) and (2) [5]. The eigenvalue problem is
represented as
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To solve the eigenvalue problem, the Laplace transformation is applied to equation (3):

[s�#2s�#(1!�)s�!�]<M (s)
"[s�#2s�#(1!�)s]<(0)#(s�#2s�#1!�)<�(0)

#(s�#2s)<��(0)#(s�#2)<���(0)#s<���(0)#<���(0)!L(G
�
)#L(G

��
),
(5)

where

L(G
�
)"�

m
�

m
�
�

�	��

���
e		��s<�(�)!<(�)	d�,

L(G
��
)"
(EI)

�
(EI)

�

(s�#s)�
�	��

���
e		��<���(�)#<�(�)	d�.



790 Y. J. YOON E¹ A¸.
The integration can be normally performed using Gauss quadrature, but the integration
in equation (5) cannot be directly performed, because ��

�
and �	

��
cannot be used in the

Gauss quadrature integration. Therefore, continuity conditions at �
�
and �

��
are used to

perform the integration by Gauss quadrature.

2.2. GAUSS QUADRATURE AND CONTINUITY CONDITIONS

For the Laplace transform of G
�
and G

��
, the continuity conditions at �

�
and �

��
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be considered because the start and the end points of the integral are on the geometrically
discontinuous points. The continuity conditions at �

�
are
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and the continuity conditions at �
��
are analogous [5].

The continuity conditions of a ring with a local deviation can be easily considered,
because the integration can be simply performed assuming a simple function in the small
range of integration and the continuity conditions are used after the integration. We used
the Gauss quadrature for the integration of the ring with widely distributed deviation.
However, the integration cannot be performed before the continuity condition is
considered, because ��

�
and �	

��
cannot be directly used in the Gauss quadrature integration.

To consider the continuity conditions before the integration, the range of the integration
is changed by a coordinate transformation equation
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Using this transformation equation, the integrals in equation (5) are changed to the
following equation:
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Applying the Gauss}Legendre quadrature, the "nal forms of the integrations are
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where i denotes the Gaussian point from 1 to N and w
�
denotes the weighting coe$cient at

the ith Gaussian point.

2.3. ANALYSIS FOR THE MODE SHAPE AND NATURAL FREQUENCY

The inverse Laplace transform of equations (5) and (10) can be represented by the
Bromwich integral, and can be "nally obtained by using the Residue theorem [14].
Assuming that e	�<M (s) has simple poles at s"$Z
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The matching boundary conditions

<���(0)"<���(2
), n"0, 1, . . . , 5 (13)

are introduced to reduce the unknowns of equation (11). Applying these matching boundary
conditions to equation (11), we can obtain an equation
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All G
��
in equation (12) should be zero, because Z

�
's are assumed to be di!erent from one

another. These conditions can be expressed in matrix form:
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From the manipulation of the above equations based on reference [5], equation (11) is
formulated to the equation
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From equation (17) and its derivatives, we can arrange the relations of <, <�, and <���
corresponding to the kth Gaussian point (k"1, . . . ,N ) as

�
�
��


[
�
A

��
<(�

�
)#



A

��
<�(�

�
)#

�
A

��
<���(�

�
)]"0,

�
�
��


[
�
B
��
<(�

�
)#



B
��
<�(�

�
)#

�
B
��
<���(�

�
)]"0,

�
�
��


[
�
C

��
<(�

�
)#



C

��
<�(�

�
)#

�
C

��
<���(�

�
)]"0,

(18)



TABLE 1

Geometry and material properties of the ring with widely
distributed density deviation

E
�

210GPa
�
�

7850kg/m�
�
�

3925kg/m�
R 300mm
t
�

10mm
h 10mm
�� 903 (�

�
"453, �

��
"1353)
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where coe$cients of equation (18) are shown in Appendix A. Equation (18) can be
represented as a simple matrix form
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The size of matrix M depends on the number of Gaussian points N, limiting the size
because the integration using the Gauss quadrature converges very quickly with small
number of Gaussian points. From the characteristic equation obtained from det(M)"0,
the natural frequencies of a circular ring with widely distributed deviation are obtained [7].
Once we obtain the natural frequencies, <(�

�
), <�(�

�
), and <���(�

�
) are calculated from

equation (19) and substituted into equation (12) to get C
��
and D

��
which are used in

equation (16) to obtain the mode shapes.

3. VERIFICATION

The natural frequencies and mode shapes of a ring with widely distributed deviation were
calculated by the method proposed in this study, and compared to the results of FE analysis
and modal test. Mass and sti!ness e!ects were veri"ed by FE analysis, and an actual ring
with a thickness deviation was built to verify the combined e!ect by modal test. For the
integration convergence, "ve Gaussian points showed acceptable results, but for more
accuracy, seven Gaussian points were used in this analysis.

3.1. VERIFICATION OF THE MASS AND STIFFNESS EFFECT

A circular ring shown in Table 1 was analyzed to verify the mass e!ect. This ring has 50%
density deviation distribution over the wide range of 903. In the FE analysis, an FE model
was constructed from 720 solid elements and analyzed by a commercial FEA program



TABLE 2

Comparison of the natural frequencies of the ring with widely
distributed density deviation calculated from the proposed analysis

and FEA

Proposed
Mode analysis (Hz) FEA (Hz) Di!erence (%)

1-1 76)23 76)31 0)11
1-2 76)36 76)44 0)10
2-1 213)43 213)82 0)18
2-2 219)50 219)90 0)18
3-1 412)44 413)69 0)30
3-2 419)70 420)96 0)30

Figure 2. Mode shapes of the ring with widely distributed density deviation from (a) FEA and (b) proposed
analysis.
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(ANSYS). The results are compared in Table 2 and Figure 2, which show good correlation
between the results of the two methods.
To verify the sti!ness e!ect, a circular ring in Table 3 was used for the analysis. This ring

has 50% sti!ness deviation distribution over the wide range of 903. The FE model of this
ring also had 720 solid elements, and Young's Modulus was changed for the sti!ness
asymmetry. The natural frequencies and mode shapes are compared in Table 4 and
Figure 3. The comparison shows that the results from the analysis proposed in this study
correlate well to the results by FEA.
Figures 2 and 3 show that the middle point of the deviation region (top of the ring) is the

anti-nodal point for the symmetric mode as well as the nodal point for the antisymmetric mode.

3.2. VERIFICATION OF THE COMBINED EFFECT

An actual ring that has 10% thickness deviation distribution over the range of 303 was
built to verify the combined e!ect by modal test. Figure 1 and Table 5 show the geometry
and the material property of the ring; 10% decrease of thickness is identical with 27%
decrease in Young's modulus and 10% decrease in mass per unit length. An FE model of
this ring was also built to compare with the other results.



TABLE 3

Geometry and material properties of the ring with widely
distributed sti+ness deviation

E
�

210GPa
E
�

105GPa
�
�

7850kg/m�
R 300mm
t
�

10mm
h 10mm
�� 903 (�

�
"453, �

��
"1353)

TABLE 4

Comparison of the natural frequencies of the ring with widely distrib-
uted sti+ness deviation calculated from the proposed analysis and FEA

Proposed
Mode analysis (Hz) FEA (Hz) Di!erence (%)

1-1 63)68 63)76 0)12
1-2 65)56 65)63 0)11
2-1 180)25 180)59 0)19
2-2 185)22 185)58 0)20
3-1 346)10 347)22 0)32
3-2 354)11 355)18 0)30

Figure 3. Mode shapes of the ring with widely distributed sti!ness deviation from (a) FEA and (b) proposed
analysis.
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Table 6 and Figure 4 show the comparisons of the natural frequencies and the mode
shapes obtained from the proposed analysis, FE analysis, and modal test. The comparisons
show that the result from each method correlated well with each another. The middle point
of the deviation region is also the anti-nodal point for the symmetric mode as well as the
nodal point for the antisymmetric mode.



TABLE 5

Geometry and material properties of the ring with widely
distributed thickness deviation

E
�

68GPa
�
�

2690)8kg/m�
R 165mm
h 5)8mm
t
�

10mm
t
�

9mm
�� 303 (�

�
"753, �

��
"1053)

TABLE 6

Comparison of the natural frequencies of the ring with widely
distributed thickness deviation obtained from the proposed analysis,

FEA, and modal test

Proposed
Mode analysis (Hz) FEA (Hz) Modal test (Hz)

1-1 224)82 (0)12) 223)35 (0)53) 224)55
1-2 227)68 (0)10) 227)46 (0)00) 227)45
2-1 637)56 (0)43) 634)08 (0)11) 634)80
2-2 642)61 (0)11) 641)49 (0)06) 641)88
3-1 1224)92 (0)83) 1219)59 (0)39) 1214)86
3-2 1229)98 (0)64) 1226)95 (0)39) 1222)15

Note: The values in the parentheses are percentage errors from the modal test.

Figure 4. Mode shapes of the ring with widely distributed thickness deviation from (a) FEA and (b) proposed
analysis.

796 Y. J. YOON E¹ A¸.
4. SIMULATION OF NATURAL FREQUENCY

The natural frequencies of a ring with a distributed deviation over 303 were
calculated with variations of density, sti!ness, and thickness in the deviation region,
using the method proposed in this study to investigate the e!ect of the variations on the
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Figure 6. Natural frequency ratios with variations of the sti!ness in the deviation.

natural frequencies. The simulation was conducted for the "rst and second natural
frequencies.
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4.1. NATURAL FREQUENCY CHANGE DUE TO THE MASS AND STIFFNESS VARIATION

Figure 5 shows the e!ect of variation in density on each natural frequency. The vertical
axis is the natural frequency ratio of the deviation ring to a uniform ring. The density range,
shown on the horizontal axis, is from 50 to 200% of the uniform ring's density (7850kg/m�).
Figure 6 shows the simulation results of a ring with sti!ness (Young's modulus) deviation
distribution over 303. The sti!ness range, shown on the horizontal axis, is also from 50 to
200% of the uniform ring's sti!ness (210GPa).
Figures 5 and 6 reveal that the density and sti!ness deviations a!ect the natural

frequencies of the symmetric modes more than those of antisymmetric modes; speci"cally,
the sti!ness e!ects are greater than the mass e!ects on the symmetric modes. Generally, the
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antisymmetric modes' natural frequencies of a ring with local sti!ness deviation in a small
region are same as those of a uniform ring because the local deviation is located at the nodal
point that has no bending. However, the natural frequencies of a ring with a local mass
deviation are slightly di!erent from those of a uniform ring because the circumferential
displacement of the nodal point is less than its radial displacement. However,
Figure 6 shows the natural frequency changes of antisymmetric modes due to the deviation
distribution over 303 and the bending deformation of the ring without the nodal point in
this range.

4.2. NATURAL FREQUENCY CHANGE DUE TO THE THICKNESS VARIATION

Figure 7 represents the natural frequency ratio with the variation of thickness on the
horizontal axis. Simulation was performed using a ring model with a density of 7850kg/m�

and Young's modulus of 210GPa.The thickness range, shown on the horizontal axis, is also
from 50 to 200% of the uniform ring's thickness (10mm).
As shown in Figure 7, when the thickness in the deviation region is thinner than in the

other part, the natural frequencies are not signi"cantly changed. However, the e!ect of
asymmetry appears signi"cantly in the symmetric modes, when the thickness in the
deviation region is thicker than that in the other part. The natural frequencies of the
symmetric modes increase exponentially up to about 15mm, and start to converge to
speci"c natural frequencies from about 19mm.

5. CONCLUSIONS

A new method for the eigenvalue analysis of a ring with widely distributed deviation was
proposed. Laplace transform was used for the proposed analysis to "nd the exact solution
evaluation without assuming any trial functions and "nite elements, and the widely
distributed deviation was e!ectively formulated in the theory by the Gauss}Legendre
quadrature.
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The natural frequencies and mode shapes of the rings with density, sti!ness, and thickness
deviations were calculated by the proposed method, and compared with those from FEM
and modal test for the veri"cation. Based on the veri"ed results, more simulations were
performed to investigate the e!ect of partial change of density, sti!ness, and thickness on the
natural frequencies for various cases.
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APPENDIX A

The coe$cients of equation (18)
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APPENDIX B: NOMENCLATURE

w
�

weighting coe$cient for Gaussian quadrature
E Young's modulus
M* equivalent mass of the partial deviation
(EI)* equivalent bending sti!ness of the partial deviation
H

�
step function of H(�!�

�
)

m
�

added mass per unit length
R radius of the neutral surface of the circular ring
<(�) circumferential displacement of the circular ring
�
�

delta function of �(�!�
�
)

�
�

starting position of the partial deviation
�
��

ending position of the partial deviation
�� angle of the partial deviation
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